berapakah busur setengah lingkaran yang dapat dibuat dari suatu lingkaran

Iya dong, judulnya aja udah bisa dilihat ya "setengah lingkaran". Berarti ya ½ dari lingkaran. Untuk rumus keliling dan luasnya juga ya cukup dikalikan ½ aja. Rumus mencari luas setengah lingkaran: Luas = π r 2 / 2. Rumus mencari keliling setengah lingkaran: Keliling = π D / 2. Atau. Keliling = π r. PengertianLingkaran. Lingkaran merupakan bangun datar yang terbentuk dari himpunan semua titik persekitaran yang mengelilingi suatu titik asal dengan jarak yang sama. jarak tersebut biasanya dinamakan r, atau radius, atau jari-jari. Sifat dari lingkaran, yaitu mempunyai simetri lipat dan simetri putar yang tak terhingga jumlahnya. Jikakurang dari setengah lingkaran (busur minor) Jika lebih dari setengah lingkaran (busur mayor) Tali busur yang melalui titik pusat. Karena titik pusatnya termuat pada tali busur. Misalkan diketahui suatu lingkaran, Bagaimana cara kalian menentukan titik pusatnya Jelaskan. Daerah terbanyak yang bisa dibuat adalah 14 daerah dengan 3 Lingkaran A memiliki jari-jari 14 cm. Tentukan sudut pusat dan jari-jari suatu juring lingkaran lain agar memiliki luas yang sama dengan lingkaran A. Panjang busur sama dengan keliling lingkarannya ketika sudut pusatnya adalah 360°. Luas lingkaran A = πr² = 22/7. 14.14 = 616 Juring yang luanya sama dengan A ( 616) adalah Busursetengah lingkaran adalah busur yang memiliki sudut setengah lingkaran atau 180°. Sudut 180° membentuk garis lurus yang membagi dua lingkaran. Sehingga, busur setengah lingkaran sama dengan setengah keliling lingkaran. L = (θ/360°) x 2πr L = (180°/360°) x 2πr L = 1/2 x 2πr L = πr. Sehingga, rumus busur setengah lingkaran adalah πr. Vay Tiền Nhanh Chỉ Cần Cmnd Nợ Xấu. –Materi matematika pengertian rumus setengah lingkaran untuk cara menghitung luas, keliling, volume dan contoh soal setengah lingkaran beserta pembahasannya lengkap. Halo sahabat, pada kali ini, kita akan membahas materi tentang Rumus Setengah Lingkaran, yang dalam pembahasan ini, kita akan mencari tahu apa sih bangun datar setengah lingkaran itu? bagaimana menentukan Luas setengah lingkarannya? kemudian bagaimana menghitung Keliling setengah lingkarannya?. Untuk itu, yuk kita simak lebih lanjut pembahasannya dibawah ini Pengertian Bangun Datar Setengah Lingkaran Cara Menghitung Luas dan Keliling Lingkaran Contoh Soal dan Pembahasannya Rumus Menghitung Keliling setengah 1/2 Lingkaran Contoh soal Menghitung rumus keliling setengah 1/2 lingkaran Share this Pengertian Bangun Datar Setengah Lingkaran Setengah 1/2 lingkaran adalah sebuah gambar ruang dua 2 dimensi yang berbentuk melingkar bulat namun hanya berbentuk setengah lingkaran saja, dalam artian bentuk lingkaran ini hanya sebagian saja. Selain itu, ada juga bentuk lingkaran dalam bentuk yang lainnya, misalkan seperti 1/4 lingkaran, 1/3 lingkaran dan lain-lain. Coba kita perhatikan gambar dibawah berikut Gambar Setengah Lingkaran Setelah mengetahui apa itu yang dimaksud dengan setengah lingkaran, sekarang kita lanjutkan ke pembahasan rumus setengah lingkaran. Cara Menghitung Luas dan Keliling Lingkaran Untuk bisa menghitung setengah 1/two lingkaran, kita harus memahami terlebih dahulu rumus-rumus yang ada pada sebuah lingkaran penuh. Rumus Luas Lingkaran Luas = π r2 Keterangan π = 3,14 atau 22/seven yang merupakan sudah menjadi ketetapan dari lambang tersebut r = jari – jari Rumus Luas Setengah lingkaran penuh yaitu Luas Setengah 1/2 Lingkaran sama dengan 1/2 ten π x rtwo Keterangan π = 3,fourteen atau 22/seven yang merupakan sudah menjadi ketetapan dari lambang tersebut r = Jari-jari Contoh Soal dan Pembahasannya 1. Sebuah lingkaran memiliki jari-jari 20 cm. Apabila lingkaran tersebut dibagi menjadi dua two bagian, maka berpakah luas setengah 1/2 lingkaran tersebut? π = 3,14 Jawab Jika diketahui r = 20 cm π = 3,xiv Maka, berapakah luas setengah ane/ii lingkarannya … ? Penyelesaian Kita gunakan rumus menghitung luas setengah 1/2 lingkaran, maka Luas Setengah 1/2 Lingkaran, yaitu 1/2 x π x r2 Masukkanlah nilai yang diketahui ke dalam rumus tersebut Luas Setengah 1/2 Lingkaran yaitu 1/ii 10 π ten r2 = 1/2 x 3,xiv x 20two = 1/ii x 3,xiv 10 400 = 628 cm2 Maka, luas setengah lingkaran tersebut ialah 628 cmii 2. Sebuah bola memiliki jari-jari 8 cm. Kemudian tersebut suatu ketika terbelah menjadi dua 2 bagian, maka apabila kita ingin menghitung luas setengah bagian dari bola trsebut, berpakah luas setengah one/2 bagian bola tersebut? π = 3,14 Jawab Apabila diketahui r = 8 cm π = three,14 Maka, berapakah luas setengah i/2 lingkarannya … ? Pembahasan penyelesaiannya Kita gunakan rumus menghitung luas setengah 1/2 lingkaran, maka Luas Setengah 1/2 Lingkaran, yaitu one/2 ten π x rii Kita masukan nilai yang sudah diketahui ke dalam rumus tersebut Luas Setengah ane/ii Lingkaran yaitu 1/2 ten π ten r2 = 1/2 x iii,xiv x 8two = 1/2 10 3,xiv 10 64 = 100 cm2 Maka, luas setengah lingkaran tersebut ialah 100 cm2 Selanjutnya kita pelajaran cara bagaimana menghitung keliling setengah lingkaran Rumus Menghitung Keliling setengah ane/2 Lingkaran Rumusnya yaitu Keliling Setengah i/two Lingkaran sama dengan π x r Keterangan π = 3,fourteen atau 22/seven merupakan ketetapannya r = Jari-jari Contoh soal Menghitung rumus keliling setengah 1/2 lingkaran Perhatikan gambar berikut ini Dari gambar diatas, bisa dilihat bahwa gambar tersebut merupakan gambar setengah lingkaran. Apabila diameter setengah lingkaran tersebut sebesar 16 cm dan π = 22/7. Maka, tentukanlah keliling setengah lingkaran tersebut Jawab Jika diketahui d = 16 cm maka, r = 16/2 = 8 cm π = 22/seven Yang ditanyakan Berapakah jumlah keliling setengah lingkarannya … ? Penyelesaian pembahasannya Kita gunakan rumus menghitung sebuah keliling setengah lingkaran Keliling Setengah 1/2 Lingkaran = π 10 r Masukkan nilai yang diketahui ke dalam sebuah rumus Keliling Setengah 1/2 Lingkaran = 22/seven x 8 = 25 cm Maka, Jumlah keliling dari setengah lingkaran tersebut ialah 25 cm Demikianlah kita mengenai Rumus cara menghitung luas dan keliling dari sebuah bangun datar setengah lingkaran. Semoga bermanfaat ya … Rumus Terkait Rumus Tabung Rumus Belah Ketupat Berapakah busur setengah lingkaran yang dapat dibuat dari suatu lingkaran?tolong dijawab yah.... harus jawab sekarang juga bsk dikumpulin tolong yaaa... Pertanyaan baru di Matematika 1. Perbandingan murid kelas I, kelas II, dan kelas III pada sebuah sekolah adalah 11109. Jika jumlah seluruh siswa di sekolah tersebut 1200 orang. T … entukan berapa masing- masing jumlah siswa kelas I,kelas II dan kelas III​ 12. Pembangunan sebuah aula direncanakan selesai selama 30 hari dengan banyak pekerja 12 orang. Asumsikan kemampuan setiap pekerja adalah sama. Jika p … ekerjaan ingin selesai 6 hari lebih cepat, banyak pekerja tambahan yang diperlukan adalah... a. 3 orang b. 6 orang C. c. 9 orang d. 15 orangpake cara, makasih​ Diketahui suku kelima dan suku ke enam belas suatu barisan aritmatika adalah 19 dan 52. Tentukan suku ke 25 barisan tersebut...​ sebuah kubus memiliki panjang rusuk 9 cm luas permukaan kubus tersebut adalah​ jangkauan dari data 25,30,18,16,45,20,15,40 adalah​ 1 Lingkaran Standar Kompetensi Menentukan unsur, bagian lingkaran serta ukurannya Kompetensi Dasar Menentukan unsur dan bagian-bagian lingkaran Menghitung keliling dan luas bidang lingkaran Menggunakan hubungan sudut pusat, panjang busur, luas juring dalam pemecahan masalah Menghitung panjang garis singgung persekutuan dua lingkaran 2 Unsur-Unsur Lingkaran Pernahkah kamu naik sepeda? 1. Berbentuk apakah roda sepeda itu? Coba kamu sebutkan benda-benda di sekelilingmu yang mempunyai bentuk seperti roda sepeda. 2. Jika roda sepeda diputar, adakah bagian yang tidak bergerak? Disebut apakah bagian itu? Perhatikan jeruji sepeda, adakah jeruji yang panjangnya tidak sama? Jika roda sepeda tersebut berbentuk lingkaran, disebut apakah bagian yang tidak bergerak dan jeruji sepeda itu? C D B A O Gambar three. Gambar di samping adalah gambar lingkaran dengan pusat O. Titik A terletak pada lingkaran. a. Ada berapa titik yang terletak pada lingkaran ? b. Apakah jarak titik A,B,C, dan D ke O sama? c. Coba sebutkan suatu pengertian lingkaran menurut pendapatmu. d. Menurutmu, apa nama yang tepat untuk , OB , OA OC , dan OD dan apa nama yang tepat untuk BD? half-dozen. ane Lingkaran dan Bagian-bagiannya Apa yang akan kamu pelajari? Unsur-unsur lingkaran Pendekatan nilai p Kata Kunci Lingkaran Keliling lingkaran Pusat lingkaran Jari-jari lingkaran Diameter lingkaran Talibusur lingkaran Juring lingkaran Tembereng lingkaran three k • A Gambar B A P Gambar B A C • • D Gambar • A B Gambar 4. Perhatikan gambar di samping. Jika kamu berjalan searah putaran jarum jam dari titik A menelusuri lingkaran dan kembali ke titik A, maka panjang lintasan yang dilalui itu dinamakan keliling lingkaran K. Perhatikan gambar di samping . Sudut pusat adalah sudut di dalam lingkaran yang titik sudutnya adalah titik pusat lingkaran. ∠APB adalah sudut pusat lingkaran. Gambar lah sudut pusat yang lain. Ada berapa sudut pusat yang dapat kamu gambar? AB adalah tali busur lingkaran. Gambarlah tali busur yang lain. Ada berapa tali busur yang dapat kamu buat? Sebutkan dengan kata-katamu sendiri pengertian tali busur! 5. Garis lengkung ADC disebut busur panjang atau busur besar dan ditulis ADC. Apakah ciri suatu busur panjang? Sedangkan garis lengkung ABC disebut busur pendek atau busur kecil dan ditulis ABC atau AC saja. Apakah ciri suatu busur pendek? Tulislah dua busur panjang dan dua busur pendek yang lain. Selanjutnya jika disebut busur AC maka yang dimaksud adalah busur pendek AC. half-dozen. Jika AB diameter lingkaran maka AB disebut busur setengah lingkaran. Ada berapa busur setengah lingkaran yang dapat kamu buat? Coba gambar busur setengah lingkaran yang lain. 4 7. Gambar di samping adalah jembatan dengan bagian kerangka yang melengkung merupakan busur lingkaran. Coba kalian jalan-jalan keluar sekolah. Amati benda-benda di sekitarmu yang berbentuk lingkaran atau bagian-bagian dari lingkaran. Catat dan hasilnya kamu kemukakan pada temanmu di depan kelas. 8. Perhatikan gambar daerah di dalam lingkaran yang dibatasi oleh dua jari-jari dan satu busur disebut juring. Bagian lingkaran yang berwarna merupakan juring kecil AOB, sedangkan bagian yang tidak berwarna merupakan juring besar AOB. Selanjutnya yang disebut juring AOB adalah juring kecil AOB. 9. Gambar di samping menunjukkan buah semangka yang telah dimakan seorang anak dan bentuknya disebut juring lingkaran Dapatkah kamu menunjukkan benda-benda di sekitarmu yang berbentuk juring lingkaran? A C • B Gambar 10. Pada gambar di samping, daerah dalam lingkaran yang dibatasi oleh sebuah talibusur dan busurnya dinamakan tembereng. Bangun ABC merupakan tembereng lingkaran. Dapatkah kamu menunjukkan benda-benda di sekitarmu yang berbentuk tembereng? eleven. Ibu Ninuk mempunyai 6 orang anak. Ibu Ninuk akan membagikan kue yang permukaannya berbentuk lingkaran. Dapatkah kamu membantu ibu Ninuk untuk membagi kue sehingga semua mendapat bagian yang sama? Bagaimana caramu membagi kue itu? Dit. PSMP, 2006 Gambar Gambar half Dit. PSMP, 2006 Gambar B A v 1. Berapakah banyaknya jari-jari yang berbeda dari suatu lingkaran? Berapa banyaknya diameter yang berbeda dari suatu lingkaran? 2. Buatlah lingkaran dengan pusat O. Gambarlah beberapa talibusur lingkaran dan ukurlah panjangnya. Talibusur manakah yang terpanjang? Apakah nama khusus bagi talibusur terpanjang itu? three. Berapakah perbandingan panjang jari-jari dan diameter lingkaran? 4. Gambarlah lingkaran dengan pusat A dan jari-jari ii cm! Gambarlah sudut pusat BAC! Gambarlah lingkaran lain dengan pusat A dan jari-jari four cm! Gambarlah sudut pusat BAC! Jika jari-jari lingkaran diperbesar dua kali, apakah ukuran sudut BAC berubah? Untuk soal nomor 5 sampai dengan xiv gunakan gambar half di bawah! Gambar di samping adalah lingkaran dengan pusat P v. Talibusur yang juga diameter adalah …… half dozen. Jika KN = 12 cm, tentukan panjang PL! 7. Apakah PM talibusur lingkaran ? eight. Apakah PN = PL? ix. Sebutkan empat ruas garis yang merupakan jari-jari lingkaran! 10. Apakah PQ R + r. Apakah kedua lingkaran itu berpotongan? Gambar • N • M R r Gambar adalah lingkaran dengan pusat G berjari-jari R dan lingkaran dengan pusat Due north berjari-jari r dengan MN = R + r. Apakah kedua lingkaran itu berpotongan? Gambar adalah lingkaran dengan pusat Grand berjari-jari R dan lingkaran dengan pusat N berjari-jari r dengan MN < R + r. Apakah kedua lingkaran itu berpotongan? Gambar adalah lingkaran dengan pusat M berjari-jari R dan lingkaran dengan pusat Northward berjari-jari r dengan MN = R – r. Apakah kedua lingkaran itu berpotongan? N • • M Gambar Gambar half M R r Due north half-dozen. 6 Garis Singgung Persekutuan Dua Apa yang akan kamu pelajari? • Kedudukan dua lingkaran • Melukis garis singgung • Menghitung panjang garis singung • Melukis garis singgung persekutuan dua lingkaran • Menghitung panjang garis singgung persekutuan dua lingkaran • Layang-layang garis singgung. Kata Kunci • Garis singgung • persekutuan Lingkaran A •N • M 35 Gambar adalah lingkaran dengan pusat One thousand berjari-jari R dan lingkaran dengan pusat Northward berjari-jari r dengan M=Due north. Kedua lingkaran ini dinamakan lingkaran yang sepusat konsentris. N•M Gambar Garis Singgung Persekutuan Gambar half di bawah adalah rantai sepedamu yang menghubungkan piringan di bagian depan dan gir di bagian belakang. Gambar Apakah rantai menyinggung piringan? Apakah rantai menyinggung gir? Ternyata rantai menyinggung piringan dan gir. Masih banyak contoh-contoh di sekitarmu seperti mesin perontok padi, mesin parut kelapa, dll. •G A •Due north D C B Pada gambar di samping, garis AB dan DC menyinggung lingkaran yang berpusat di Chiliad dan lingkaran yang berpusat di N. Kedua garis singgung itu disebut garis singgung persekutuan luar. Gambar 36 •M P •N S Q R Adakah garis singgung persekutuanlainnya? Pada Gambar PQ dan RS Lingkaran pusat Grand dan lingkaran pusat North gambar di samping tidak berpotongan mempunyai garis singgung PQ dan RS. Kedua garis singgung itu disebut garis singgung persekutuan dalam. Panjang Garis Singgung Persekutuan Gambar •A • B N L a R d r Gambar Gambar di samping adalah lingkaran dengan pusat A dan panjang jari-jari R serta lingkaran dengan pusat B dan panjang jari-jari r. Jarak antara A dan B dinyatakan dengan a. Ruas garis KL dengan panjang d adalah salah satu garis singgung persekutuan luar kedua lingkaran itu. Melalui B gambarlah garis sejajar KLsehingga memotong AKdi N. Dengan demikian BN ⊥ AK. a. Bangun apakah segiempat BNKL? b. Segitiga apakah ΔANB? Perhatikan ΔANB. ΔANB adalah segitiga siku-siku dengan demikian berlaku hubungan ABii = ANii + BNii BN2 = AB2 – AN2 = ABii – AK – NKii BN = two 2 NK AK AB − − padahal BN = KL dan NK = BL Jadi KL = AB 2− AK − BL ii atau 2 2 r R a d= − − dengan a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar r jari-jari lingkaran kecil K 37 Gambar • A •B K L Northward R r d a Bagaimana menghitung panjang garis singgung persekutuan dalam? Gambar di samping adalah lingkaran dengan pusat A dan dengan pusat B. KL garis singgung persekutuan dalam. a. Gambarlah garis melalui B sejajar KL dan memotong perpanjangan AL di N. b. Bangun apakah segiempat BKLN? c. Segitiga apakah Δ ABN? Pada Δ ABN berlaku AB2 = ANtwo + BNtwo BN2= AB2 – AN2 BN2= AB2 – AL + NL2 Karena NL = BK maka BN = AB2− AL+NL 2 BN = AB ii − AL+BK ii KL = BN Jadi KL = AB2 − AL+BK 2 atau 2 two r R a d= − + dengan a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar r jari-jari lingkaran kecil •A • B thirteen cm 8 cm Thousand 50 Perhatikan gambar di samping, KL garis singgung persekutuan. AK = 8 cm, AB = thirteen cm dan BL = 3 cm. Hitung panjang ruas garis KL . 38 Gambar di samping adalah lingkaran dengan pusat A dan dengan pusat B. KL garis singgung persekutuan dalam kedua lingkaran. AL = iii cm, BK = ii cm dan AB = thirteen cm. Hitung KL. • A •B K L 1. Apakah dua lingkaran yang bersinggungan di luar mempunyai garis singgung persekutuan? Ada berapa garis singgung persekutuan? Gambarlah garis singgung persekutuan tersebut. 2. Apakah dua lingkaran sepusat mempunyai garis singgung persekutuan? Ada berapa garis singgung persekutuannya? Gambarlah garis singgung persekutuan tersebut, jika ada. Untuk soal 3 sampai dengan 6, KL adalah garis singgung persekutuan. three. 4. x = … y = … •A •B Fifty K a r R y •A • B R L K a r x Soal 2 39 •A • B Fifty K •A • B b x a 5. 6. KL = … x = … 7. Apakah dua lingkaran berpotongan mempunyai garis singgung persekutuan? Ada berapa garis singgungnya? Gambarlah garis singgung tersebut. viii. Apakah dua lingkaran bersing-gungan di dalam mempunyai garis singgung persekutuan? Ada berapa garis singgungnya? Gambarlah garis singgung tersebut. Untuk soal ix dan x, KL adalah garis singgung persekutuan. 9. 10. x = … 10 = … • A ten •B a R r 1000 50 Untuk soal no. eleven – 12 gunakan gambar di bawah, AB garis singgung persekutuan. • P • Q B A 11. Jika AP = 24 cm, BQ = 14cm, PQ = 46 cm, tentukan AB. 12. Jika AB = sixteen cm, PQ = 20cm, Fifty B A a x r R 40 Gambar • Q •P A B Untuk soal no. 13 – 15 gunakan gambar di bawah, dengan AB garis singgung persekutuan. 13. Jika QA = 7 cm, BP = 5 cm dan PQ = twenty cm, tentukan AB. 14. Jika AB = 24 cm, PQ = 26 cm dan BP = six cm, tentukan AQ. 15. Jika QA = 5 cm, BP = 4 cm, dan PQ = 15 cm, tentukan 41 Refleksi • Setelah kamu mempelajari materi ini, adakah bagian yang tidak kamu mengerti? Jika ada, coba diskusikan dengan temanmu. • Buatlah rangkuman tentang apa yang telah kamu pahami dan catatlah hal-hal yang sulit kamu pahami • Sebutkan unsur-unsur lingkaran yang kamu ketahui • Disebut apakah talibusur terpanjang dalam lingkaran? • Sebutkan hubungan sudut pusat dan sudut keliling yang menghadap busur yang sama • Sifat-sifat apa yang kamu ketahui tentang sudut-sudut keliling yang menghadap busur yang sama? • Sebutkan hubungan sudut pusat, panjang busur dan luas juring dalam lingkaran • Sebutkan macam-macam garis singgung lingkaran! • Apakah garis singgung lingkaran selalu tegak lurus diameter? • Merupakan apakah perpotongan ketiga garis bagi sudut dalam sebuah segitiga? • Merupakan apakah perpotongan ketiga garis sumbu dalam sebuah segitiga? • Sebutkan kemungkinan-kemungkinan kedudukan dua lingkaran! • Sebutkan macam-macam garis singgung persekutuan dua lingkaran! • Apa komentarmu tentang pembelajaran materi Pythagoras senang, membosankan, mudah dimengerti atau lainnya? Sampaikan hal itu kepada bapak/ibu gurumu! Rangkuman • Jika kamu berjalan searah putaran jarum jam dari titik A menelusuri lingkaran dan kembali ke titik A, maka panjang lintasan yang dilalui itu dinamakan keliling lingkaran K. • Sudut pusat adalah sudut di dalam lingkaran yang titik sudutnya adalah titik pusat lingkaran • Tali busur lingkaran adalah ruas garis yang menghubungkan dua titik pada lingkaran • Juring adalah daerah di dalam lingkaran yang dibatasi oleh dua jari-jari dan satu busur 42 • Panjang diameter dua kali panjang jari-jari • Sudut pusat adalah sudut yang dibentuk oleh dua jari-jari dan berpotongan di pusat lingkaran • Sudut keliling adalah sudut yang dibentuk oleh dua tali busur dan berpotongan pada lingkaran • Besar sudut pusat sama dengan dua kali besar sudut keliling yang menghadap busur yang sama • Besar sudut keliling-sudut keliling yang menghadap busur yang sama adalah sama besar • Sudut-sudut pusat berbanding sebagai p q, maka perbandingan panjang busurnya dan perbandingan luas juringnya yang sesuai dengan sudut-sudut pusat tersebut adalah sama, yaitu p q • Terdapat dua macam garis singgung pada lingkaran, yaitu garis singgung lingkaran dalam dan garis singgung lingkaran luar • Melalui suatu titik pada lingkaran hanya dapat dibuat satu garis singgung pada lingkaran tersebut. • Melalui suatu titik di luar lingkaran dapat dibuat dua garis singgung pada lingkaran tersebut. • Jika P di luar lingkaran maka jarak P ke titik-titik singgungnya adalah sama. • Perpotongan antara ketiga garis sumbu pada segitiga merupakan pusat lingkaran luar sebuah segitiga. Ide ini dapat digunakan melukis lingkaran luar suatu segitiga. • Garis-garis bagi sebuah segitiga berpotongan di satu titik yang merupakan pusat lingkaran O. Ide ini dapat digunakan untuk melukis lingkaran dalam suatu segitiga. • Rumus panjang garis singgung persekutuan luar dua lingkaran atau 2 2 r R a d= − − dimana a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar r jari-jari lingkaran kecil • Rumus panjang garis singgung persekutuan dalam dua lingkaran atau 2 2 r R a d= − + dimana a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar 43 • • • • O C B A 50° • O xviii % 22 % 60 % TNI PNS B C A Wiraswasta ii. Perhatikan gambar di samping. Jika besar ∠OAC = l°, maka besar ∠ABC adalah …. a. 40° b. l° c. 80° d. 100° 3. Sebuah ban sepeda kelilingnya adalah 176 cm. Dengan memilih π = 227 , maka jari-jari ban sepeda adalah …. a. 4 cm b. 7 cm c. 14 cm d. 28 cm four. Sebuah mobil bergerak sehingga rodanya berputar chiliad kali. Jika jarak yang ditempuh 1,32 km dan π = 7 22, maka jari-jari ban mobil adalah …. a. 12 cm b. 21 cm c. 24 cm d. 42 cm 1. Sebuah lingkaran dengan pusat O dan berjari-jari ten cm. Titik P dan Q terletak pada lingkaran. Jika besar ∠POQ = 36°, maka luas juring POQ adalah …. a. 314 cm2 b. 31,four cm2 c. 3,14 m2 d. 0,xiv mii 5. Data pekerjaan orang tua murid SLTP di Maluku Utara diketahui seperti diagram di samping. a. Besar sudut pusat AOB = ….. b. Besar sudut pusat BOC = ….. c. PanjangPanjang busurbusur BCAB =… d. = … BOC juring Luas AOB juring Luas 44 K •P M N L C D A B 6. Gambar di samping adalah persegi yang sisi-sisinya menyinggung lingkaran. Jika PL = 4 cm. Tentukan panjang a. Sisi persegi. b. Diagonal persegi. c. Panjang garis singgung. d. Dapatkah kamu menyebutkan 4 layang-layang garis singgung pada gambar itu? • P A D B C 7. Gambar di samping adalah lingkaran dengan pusat P, merupakan lingkaran luar ΔABC samakaki dengan Ac = BC. Jika CB = v cm dan BD = three cm, tentukan jari-jari lingkaran luar segitiga ABC 8. Tentukan keliling sebuah arloji jika diameternya ii,8 cm. 1 •A • B L K •A • B b ten a 5. 6. KL = … ten = … 7. Apakah dua lingkaran berpotongan mempunyai garis singgung persekutuan? Ada berapa garis singgungnya? Gambarlah garis singgung tersebut. 8. Apakah dua lingkaran bersing-gungan di dalam mempunyai garis singgung persekutuan? Ada berapa garis singgungnya? Gambarlah garis singgung tersebut. Untuk soal 9 dan 10, KL adalah garis singgung persekutuan. 9. x. x = … x = … • A ten •B a R r K L Untuk soal no. 11 – 12 gunakan gambar di bawah, AB garis singgung persekutuan. A L B A a ten r R ii Gambar • Q •P A B Untuk soal no. 13 – 15 gunakan gambar di bawah, dengan AB garis singgung persekutuan. xiii. Jika QA = 7 cm, BP = five cm dan PQ = 20 cm, tentukan AB. 14. Jika AB = 24 cm, PQ = 26 cm dan BP = 6 cm, tentukan AQ. 15. Jika QA = 5 cm, BP = 4 cm, dan PQ = 15 cm, tentukan three Refleksi • Setelah kamu mempelajari materi ini, adakah bagian yang tidak kamu mengerti? Jika ada, coba diskusikan dengan temanmu. • Buatlah rangkuman tentang apa yang telah kamu pahami dan catatlah hal-hal yang sulit kamu pahami • Sebutkan unsur-unsur lingkaran yang kamu ketahui • Disebut apakah talibusur terpanjang dalam lingkaran? • Sebutkan hubungan sudut pusat dan sudut keliling yang menghadap busur yang sama • Sifat-sifat apa yang kamu ketahui tentang sudut-sudut keliling yang menghadap busur yang sama? • Sebutkan hubungan sudut pusat, panjang busur dan luas juring dalam lingkaran • Sebutkan macam-macam garis singgung lingkaran! • Apakah garis singgung lingkaran selalu tegak lurus diameter? • Merupakan apakah perpotongan ketiga garis bagi sudut dalam sebuah segitiga? • Merupakan apakah perpotongan ketiga garis sumbu dalam sebuah segitiga? • Sebutkan kemungkinan-kemungkinan kedudukan dua lingkaran! • Sebutkan macam-macam garis singgung persekutuan dua lingkaran! • Apa komentarmu tentang pembelajaran materi Pythagoras senang, membosankan, mudah dimengerti atau lainnya? Sampaikan hal itu kepada bapak/ibu gurumu! Rangkuman • Jika kamu berjalan searah putaran jarum jam dari titik A menelusuri lingkaran dan kembali ke titik A, maka panjang lintasan yang dilalui itu dinamakan keliling lingkaran K. • Sudut pusat adalah sudut di dalam lingkaran yang titik sudutnya adalah titik pusat lingkaran • Tali busur lingkaran adalah ruas garis yang menghubungkan 4 • Panjang diameter dua kali panjang jari-jari • Sudut pusat adalah sudut yang dibentuk oleh dua jari-jari dan berpotongan di pusat lingkaran • Sudut keliling adalah sudut yang dibentuk oleh dua tali busur dan berpotongan pada lingkaran • Besar sudut pusat sama dengan dua kali besar sudut keliling yang menghadap busur yang sama • Besar sudut keliling-sudut keliling yang menghadap busur yang sama adalah sama besar • Sudut-sudut pusat berbanding sebagai p q, maka perbandingan panjang busurnya dan perbandingan luas juringnya yang sesuai dengan sudut-sudut pusat tersebut adalah sama, yaitu p q • Terdapat dua macam garis singgung pada lingkaran, yaitu garis singgung lingkaran dalam dan garis singgung lingkaran luar • Melalui suatu titik pada lingkaran hanya dapat dibuat satu garis singgung pada lingkaran tersebut. • Melalui suatu titik di luar lingkaran dapat dibuat dua garis singgung pada lingkaran tersebut. • Jika P di luar lingkaran maka jarak P ke titik-titik singgungnya adalah sama. • Perpotongan antara ketiga garis sumbu pada segitiga merupakan pusat lingkaran luar sebuah segitiga. Ide ini dapat digunakan melukis lingkaran luar suatu segitiga. • Garis-garis bagi sebuah segitiga berpotongan di satu titik yang merupakan pusat lingkaran O. Ide ini dapat digunakan untuk melukis lingkaran dalam suatu segitiga. • Rumus panjang garis singgung persekutuan luar dua lingkaran atau 2 2 r R a d= − − dimana a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar r jari-jari lingkaran kecil • Rumus panjang garis singgung persekutuan dalam dua lingkaran atau 2 2 r R a d= − + dimana a jarak antar pusat kedua lingkaran R jari-jari lingkaran besar 5 • • • • O C B A 50° • O 18 % 22 % 60 % TNI PNS B C A Wiraswasta two. Perhatikan gambar di samping. Jika besar ∠OAC = 50°, maka besar ∠ABC adalah …. a. twoscore° b. 50° c. lxxx° d. 100° 3. Sebuah ban sepeda kelilingnya adalah 176 cm. Dengan memilih π = 22seven , maka jari-jari ban sepeda adalah …. a. 4 cm b. vii cm c. xiv cm d. 28 cm four. Sebuah mobil bergerak sehingga rodanya berputar 1000 kali. Jika jarak yang ditempuh i,32 km dan π = 7 22, maka jari-jari ban mobil adalah …. a. 12 cm b. 21 cm c. 24 cm d. 42 cm 1. Sebuah lingkaran dengan pusat O dan berjari-jari 10 cm. Titik P dan Q terletak pada lingkaran. Jika besar ∠POQ = 36°, maka luas juring POQ adalah …. a. 314 cm2 b. 31,four cmtwo c. 3,14 m2 d. 0,14 m2 5. Information pekerjaan orang tua murid SLTP di Maluku Utara diketahui seperti diagram di samping. a. Besar sudut pusat AOB = ….. b. Besar sudut pusat BOC = ….. c. PanjangPanjang busurbusur BCAB =… d. = … BOC juring Luas AOB juring Luas vi Grand •P 1000 N L C D A B half-dozen. Gambar di samping adalah persegi yang sisi-sisinya menyinggung lingkaran. Jika PL = 4 cm. Tentukan panjang a. Sisi persegi. b. Diagonal persegi. c. Panjang garis singgung. d. Dapatkah kamu menyebutkan 4 layang-layang garis singgung pada gambar itu? • P A D B C 7. Gambar di samping adalah lingkaran dengan pusat P, merupakan lingkaran luar ΔABC samakaki dengan Air conditioning = BC. Jika CB = five cm dan BD = 3 cm, tentukan jari-jari lingkaran luar segitiga ABC 8. Tentukan keliling sebuah arloji jika diameternya ii,8 cm. - Lingkaran adalah suatu bangun geometri dua dimensi yang sangat akrab dengan kehidupan manusia. Banyak hal berbentuk lingkaran, mulai dari lubang baju dan celana, hoolahoop, penampang gelas, pizza, ban kendaraan, koin, cincin, gelang, hingga bentuk tahukah kamu bahwa lingkaran memiliki banyak elemen di dalamnya seperti titik tengah, radius, diameter, dan garis potong? Untuk mengetahui apasaja unsur dalam lingkarang, yuk kita simak penjelasan berikut ini! Sisi Lingkaran hanya memilki satu sisi, yaitu sisi melengkung yang berputar tanpa ujung. Sisi inilah yang membentuk lingkaran menjadi bulat. Panjang sisi lingkaran sama dengan keliling lingkaran. Pusat Pusat atau center dari lingkaran ditunjukkan pada titik yang berada tepat ditengah lingkaran. Dilansir dari Mathemania, pusat lingkaran memiliki jarak ke setiap sisi di sisi lingkaran yang sama yaitu r atau jari-jari. Baca juga Cara Menghitung Keliling Lingkaran Jari-jari Jari-jari merupakan garis yang menghubungkan titik pusat dengan satu titik di bagian sisi lingkaran. Jari-jari disimbolkan dengan huruf r dan selalu berbentuk garis lurus. Diameter Diameter merupakan garis yang menghubungkan tiga titik yaitu, satu titik di sisi lingkaran, titik pusat lingkaran, dan titik lainnya pada sisi lingkaran. Diameter adalah dua kali jari-jari, sehingga diameter juga selalu berupa garis lurus. NURUL UTAMI Penggambaran unsur busur, tembereng, tali busur, dan diameter pada lingkaran Tali Busur Dilansir dari Next Level Math Tutoring, akor atau tali busur adalah garis yang menghubungkan dua titik pada sisi lingkaran. Tali busur adalah garis lurus yang membelah lingkaran namun tidak melewati titik pusat dan membentuk tembereng. Tembereng Tembereng adalah bidang datar pada lingkaran yang dibatasi oleh satu tali busur dan busur. Luas tembereng dapat besar atau kecil bergantung pada panjangnya tali busur. Berapakah busur setengah lingkaran yang dapat dibuat dari suatu lingkaran?tolong dijawab yah.... harus jawab sekarang juga bsk dikumpulin tolong yaaa... 2 busur..................Mungkin Pertanyaan baru di Matematika 1. Perbandingan murid kelas I, kelas II, dan kelas III pada sebuah sekolah adalah 11109. Jika jumlah seluruh siswa di sekolah tersebut 1200 orang. T … entukan berapa masing- masing jumlah siswa kelas I,kelas II dan kelas III​ 12. Pembangunan sebuah aula direncanakan selesai selama 30 hari dengan banyak pekerja 12 orang. Asumsikan kemampuan setiap pekerja adalah sama. Jika p … ekerjaan ingin selesai 6 hari lebih cepat, banyak pekerja tambahan yang diperlukan adalah... a. 3 orang b. 6 orang C. c. 9 orang d. 15 orangpake cara, makasih​ Diketahui suku kelima dan suku ke enam belas suatu barisan aritmatika adalah 19 dan 52. Tentukan suku ke 25 barisan tersebut...​ sebuah kubus memiliki panjang rusuk 9 cm luas permukaan kubus tersebut adalah​ jangkauan dari data 25,30,18,16,45,20,15,40 adalah​

berapakah busur setengah lingkaran yang dapat dibuat dari suatu lingkaran